

Healthy Workplaces Campaign 2018-19

Manage dangerous substances in the workplace HWC Summit 2019 Bilbao

EU2019.FI

Development of exposures at European work places in the past 10 years and prospects for the future

Dr Ioannis Basinas

Senior Scientist
Institute of Occupational Medicine (IOM), UK

Email: <u>loannis.basinas@iom-world.org</u>

Background

Monitoring/surveillance of **trends** in exposure

- Allows identification of emerging issues (early warning)
- Assists making of (informed) decisions
- Better planning and policy development
- Increased effectiveness of (targeted) interventions

A very important process, but is it possible?

Background

Study aims:

- Develop and pilot a scientific method that may be utilised to assess and monitor trends in exposure to dangerous substances (DS) in EUworkplaces
- Use the methodology to identify the DS and related industrial sectors that are of greatest concern regarding the exposure and health protection of workers at present

Information sources (1)

There is a breadth of "public" data available (EU/country level)

Some examples:

- Employment and business characteristics
 - European Working Conditions Survey (EWCS)
 - Structural business statistics (SBS)
 - Joint Forest Sector Questionnaire (JFSQ)
 - Labour Force Survey (LFS)
- Substance attributes
 - ECHA list of registered substances
 - Classification and Labelling Inventory (CLP)
- Substance and article use characteristics
 - Downstream: Substances in Preparations in Nordic Countries (SPIN) database
 - Upstream: The PRODuCtion Of Manufactured goods (PRODCOM) database

Information sources (2)

Working methodology

Working step

ST1

ST2

ST3

ST4

ST5

Criteria for rating:

- a. <u>Population:</u> the number of workers potentially exposed within the specific industry
- **b.** Exposure: the likelihood of exposure occurring during use/processing within industry
- c. Health and socioeconomic impact: the impact of exposure on the health, working and social life of the worker
- 3 experts involved
- 1-3 scale system (3 indicating highest importance)
- Overall score of importance (OSI) calculated

ST6

Results: Industries were exposure is relevant

EWCS analysis: 33 industries with >30% of workers reporting exposure

Manufacture of furniture
Repair and installation of machinery & equipment
Waste collection, treatment & disposal
Construction of buildings
Civil engineering
Specialised construction activities
Trade and repair of motor vehicles
Water transport
Veterinary activities
Services to buildings and landscape
Human health activities
25
Residential care activities
Other personal service activities

Excluded

- Present in ≤14 of the EU countries
- Total EU workforce ≤100,000 persons
- In decline within EU (e.g. coal mining)
- Heavily regulated (e.g. manufacture of pharmaceutical products)

26 industries were included in the next step

Results: Relevant DS for each industry selected (ST3/ST4)

DS with data available

2820 entries across 24 industries

DS identified by experts and the literature

24 entries across 10 industries

Final list contained:

- 319 entries across all 26 industries
- 40% of entries in manufacture of chemicals and/or trade and repair of motor vehicles divisions
- 142 individual DS

- Substances excluded if:
 - Not present in ≥ 3 countries
 - Total volume of use was 0
 (i.e. ≤100 kg) for all countries

Results: Rating and selecting DS based on importance (ST5)

Expert rating results

Overall expert score	Number of DS/industry combinations	%
3	120	37
4	34	11
5	50	16
6	74	23
7	22	7
8	10	3
9	9	3
Total	319	100

 OSI ≥ 6 = 115 combinations, 68 individual DS

Results: Identifying and selecting the DS of outmost importance (1)

• 15 unique DS (19 combinations) with an OSI ≥8

Heavy metals – i.e. cadmium, chromium, lead, arsenic etc	Microbial cell wall agents, mostly endotoxins
Pesticides and fungicides	Solvents
Wood dust	3-Isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate, oligomers
Asbestos	Stoddard solvent
Mineral dust containing crystalline silica (or Quartz)	Sulphuric acid
Lubricating oils (petroleum), C24-50, solvent- extd., dewaxed, hydrogenated	Allergens incl. animal allergens
Nickel	Ammonia, aqueous solution
Fungi and fungal spores	

Results: Identifying and selecting the DS of outmost importance (2)

Experts - five proposals for utmost important DS:

- 1. Asbestos (intentional and accidental exposure) in construction
- Crystalline silica (Quartz) in construction, mining, and manufacturing industries
- 3. Non-infectious biological agents, particularly microbial cell wall and fungal agents, in the waste industry or more widely
- 4. Solvents in the printing industry and in a broader perspective
- 5. Wood dust in forestry, construction, and furniture industries

Results: Identifying and selecting the DS of outmost importance (3)

Crystalline silica in construction, mining, and manufacturing

- No EU occupational exposure limit (OEL) values in place (currently)
- Cross-industry issue
- SHECAN study results
 - ~5,300,000 workers exposed in 2006
 - >5000 annual deaths attributed to OE
- Construction not part in European Network for Silica

Non-infectious biological agents in the waste industry, or more widely

- No OEL values in place
- Agents with strong pro-inflammatory / allergenic potential
- Large socioeconomic impact
- Exposure is difficult to control
- Recycling a new industry in constant growth

Results: Identifying and selecting the DS of outmost importance (4)

Crystalline silica in construction, mining, and manufacturing

Employment data for Europe

Usage data for Quartz in Nordic countries

Source of data: Structural business statistics (SBS)

Source of data: Substances in Preparations in Nordic countries (SPIN)

https://oshwiki.eu/wiki/Developing a datadriven method for assessing and monitoring exposure to dang erous substances in EU workplaces

Results: Identifying and selecting the DS of outmost importance (5)

Crystalline silica in construction, mining, and manufacturing

Employment data for Europe

Source of data: Structural business statistics (SBS)

European Agency for Safety and Health at Work

Non-infectious biological agents in the waste industry, or more widely

Employment data for Europe

https://oshwiki.eu/wiki/Developing a datadriven method for assessing and monitoring exposure to dang erous substances in EU workplaces

Discussion

- Several limitations
 - Mainly Nordic data used
 - Data do not cover process generated
 - Short follow-up period (<10 years)
 - Strict selection criteria
 - Only UK based experts
- Developed methods can be further tailored and improved

Conclusions

 Yes, monitoring/surveillance of trends in exposure to dangerous substance in EU workplaces is possible

 The established methodology can form basis for establishing of a more permanent surveillance system concerning developments in exposure to DS within the EU

Acknowledgments

With special thanks to:

Institute of Occupational Medicine (IOM)

Mr Peter Ritchie, Mr Ken Dixon, Dr Richard Graveling,

Prof John Cherrie, Prof Martie van Tongeren,

Dr Karen Galea, Mrs Sheila Groat

EU-OSHA
Dr Lothar Lieck,
Elke Schneider

Thank You!

